WASHINGTON STATE UNIVERSITY VANCOUVER

PROGRAM DESIGN AND DEVELOPMENT - CS 121

Assignment 5 Part 1

Professor:
Ben McCAMISH

September 29, 2020

Overall Assignment

Your code should all be contained in a single file (excluding additional files I provide) titled assignment5pl.py. Make
sure that they all work on the Ubuntu OS on the lab machines. Your program must be written for Python 3.6+.

You may have noticed that this task (programming Lights On) is bigger than what I have asked you to do so far. This

program will require more than one function, and some planning about how to organize the data the game needs to keep
track of and how the functions interact and modify this data.

1 Getting started

Create a new file called assignment5pl.py and put the a header at the top of that file similar to this:

Assignment 5 Part 1
John Smith
September 24, 2019

Although I will lead you through the decomposition of this problem, I would like you to do some brainstorming to
help you practice breaking a problem down into smaller pieces. Without looking ahead, in comments at the top of that
file, answer the following:

1. What data will your program need to keep track of?
2. What will your program need to do with that data?

Try to be specific, describing what you could do with a very short function (e.g., one of the things your program will
need to do might be "Take input from the user about which light they want to toggle")

2 Implementing piece by piece

A central piece of data to keep track of, which you likely noted above, is the current state of the board. One of the central
pieces of functionality will be to modify this data after each turn, in response to the user’s input. This first section ex-
plores how we will represent the board state, and has you write a number of functions that modify this data in various ways.

To simplify things, we will begin working with a 1D version of the game, where the lights exist in a row, rather than a
grid. As you might have already guessed, we will use a list to store the current state of the board.

In this section, we will not yet implement the data modifications for Lights On, nor will we (yet) respond to user input.
That will come later. The purpose of this section is simply for you to practice modifying the values in a list.

Copy (or confirm they exist) these three functions (and import lines) into your assignment5pl.py file:

import time # provides time.sleep(0.5)
from random import choice # provides choice([0,1]), etc.
import sys # larger recursive stack

sys.setrecursionlimit(100000) # 100,000 deep

def runGenerations(L):
mnn

runGenerations keeps running evolwve...
mmn

print(L) # display the list, L
time.sleep(0.5) # pause a bit
newl = evolve(L) # evolve L into newl

runGenerations(newl) # recurse

def evolve(L):

nnn

evolve takes in a list of integers, L,
and returns a new list of integers
considered to be the "next gemeration”

mmwn

N = len(L) # N now holds the size of the list L
return [setNewElement(L, i) for i in range(N)]

def setNewElement(L, i, x=0):

nmnn

setlNewElement returns the NEW list's tth element
wnput L: any list of integers

tnput 1: the index of the new element to return
tnput T: an extra, optional input for future use

mmnn

return L[i] + 1

One note on this code: the x=0 in the third argument to setNewElement is an optional input. That is, if you provide
a third input to setNewElement, the value you provide becomes x. However, if you do not provide a third input, the value
x = 0 is used instead. Here, x isn’t used, though it will be in the future.

3 Test it out

Save your code. Then test it out with runGenerations([1,2,3]).

You should see the following output:

[1, 2, 3]
[2, 3, 4]
[3, 4, 5]
[4, 5, 6]
(5, 6, 71

You'll need to stop the function - otherwise it will run until its memory (or recursion limit) runs out.

Write a comment of 2-3 sentences describing what’s happening in the above example. Be sure to include a brief description
of how each of the three functions contributes to the behavior. Remember that you can use Python’s per-line comment
character, #, or you can simply place your comments in a triple-quoted string in your assignment5pl.py file.

nnn

like this

nnn

NOTE: To succeed in this lab, it is extremely important that you understand exactly how and why runGenerations
works. If you aren’t 100% certain you understand what’s going on, ask for help. Later problems will depend on your
understanding of runGenerations, evolve, and setNewElement. I would highly recommend you begin this assignment
early to have enough time to ask questions!

4 Questions

For each of the following questions, define a new function named setNewElement that produces the desired sequence of
lists. There is a completed example in Question 0.

You will create a new function for each question with a slightly modified function definition. For each of these questions,
paste a new setNewElement function after your most recently defined one, and then change it to match the behavior
you want. Also change the name to match the question. For example, if I were writing a function for Question 1, the
function would be defined as setNewElementql That way, all of the intermediate versions will still be in your file but
autolab can test them individually. You will need to change the call in evolve to to get the proper output when calling
runGenerations.

Add a comment to each setNewElement function to indicate which question it is intended to answer. Also, you should
probably create a main, otherwise autograder may continue with infinite loops and never complete the autograding. Add
the following to the bottom of your file and then in main make your calls to runGenerations.

def main():

if __name == '__main__"':

main()

Question 0

Write a setNewElement function that yields the following behavior when runGenerations([1,2,3]) is called.

[1, 2, 3]

[2, 4, 6]

[4, 8, 12]

[8, 16, 24]
[16, 32, 48]
[32, 64, 96]
[64, 128, 192]

Answer to Question 0

The idea here is that each output element is double the corresponding input element. Thus, the code is the following,
simply cut, pasted, and modified from the old setNewElement:

def setNewElementqO(L, i, x=0):
setNewElement returns the NEW list's ith element
tnput L: any list of integers
tnput i: the index of the new element to return
tnput x: an extra, optional input for future use

mnnn
return L[i]*2

Question 1

Write a setNewElement function that yields the following behavior when runGenerations([1,2,3]) is called.

[1, 2, 3]

[1, 4, 9]

[1, 16, 81]

[1, 256, 6561]

[1, 65536, 43046721]

Question 2

This example uses a slightly longer initial list. Write a setNewElement function that yields the following behavior when
runGenerations([1,2,3,4,5,42]) is called.

[1, 2, 3, 4, 5, 42]
[42, 1, 2, 3, 4, 5]
[5, 42, 1, 2, 3, 4]
[4, 5, 42, 1, 2, 3]
[3, 4, 5, 42, 1, 2]
[2, 3, 4, 5, 42, 1]
[1, 2, 3, 4, 5, 42]
[42, 1, 2, 3, 4, 5]
[5, 42, 1, 2, 3, 4]

Hint: each returned value is the value from the old list, L, one index to the left (lower) than the current index. Thus, the
return line will be return L[SOMETHING] where SOMETHING is a very short expression involving i and 1.

Question 3

Write a setNewElement function that yields the following behavior when runGenerations([1,2,3,4,5,42]) is called.

[1, 2, 3, 4, 5, 42]
[2, 3, 4, 5, 42, 1]
[3, 4, 5, 42, 1, 2]
(4, 5, 42, 1, 2, 3]
[5, 42, 1, 2, 3, 4]
[42, 1, 2, 3, 4, 5]
[1, 2, 3, 4, 5, 42]
[2, 3, 4, 5, 42, 1]

Hint: this is the opposite of the previous example. However, depending on how you implement it, you may need an if
and an else to handle the very last column.

Question 4: A random list generator...

Write a setNewElement function that yields a random list of Os and 1s with each generation. It completely ignores the
input list! For example (and lots of other behaviors could occur, as well) when I call runGenerations([1,2,3,4,5,42])
I get the output:

[1, 2, 3, 4, 5, 42]
[0, 0, 1, 1, 1, 0]
[0, o, 1, 1, 0, 0]
[1, 0, 0, 1, O, O]
[0, 1, 0, 1, 1, 0]
[0, 0, 0, 1, 0, 0]

Reminder: the random-choice function is choice([0,1]) — that’s all you’ll need!

5 Determining Victory

At the moment, the runGenerations function has evolved its input lists in a number of ways, but it so far has not evolved
them for any purpose or to achieve any particular result.

In the game of Lights On, the goal is to evolve the list so that all of its values are "on". Throughout the rest of the lab,
we will use 1 to indicate that a cell is "on" and 0 to indicate that it is "off". In this portion of the lab, we will experiment
with several strategies for evolving a list into a same-length list of all 1s. From now on, our initial lists will consist only
of 0s and 1s.

In your assignment5pl.py file write a function named allOnes(L) that takes as input a list of numbers L and returns
True if all of L’s elements are 1 and returns False otherwise. Raw recursion is one good way to do this, though not the
only one. Notice that the empty list vacuously satisfies the all-ones criterion, because it has no elements at all! Here are
some examples to check:

>>> allOnes([1,1,1])
True

>>> allOnes([])
True

>>> allOnes([0, 0, 2, 2]) # this should be False!
False # but be careful... if you use sum(L) == len(L), this will be True

>>> allOnes([1, 1, 01)
False

Caution about True/False! You will want to use the line return True somewhere in your code, as well as the line
return False. Be sure to return (and not print) these values! Also, watch out that you’re returning the boolean values
True and False. You DON’T want to return the strings “True” and “False”.

Improving the function runGenerations

Now that you have a function for testing if a list is all ones, improve your runGenerations function in two ways:

1. First, add a base case to the recursion, so that runGenerations stops when the input list is all 1s. An alternative
is to remove the recursion and use a loop instead.

2. Second, change runGenerations so that it returns the number of generations needed to evolve the input into all 1s.

Suggestions

Leave the print and pause lines before the check to see if the all-ones base case has been reached. That way they will
run whether it’s the base case or the recursive case that runs afterward. In order to return the number of generations
required to evolve the list into all ones, consider the mylen recursive example written in class. The idea is to add 1 for
each evolve step. That 1 needs to be added to the number of steps needed to evolve the new list into all-ones.

Testing it out

First, you might want to reduce or remove the half-second pause produced by the line time.sleep(0.5). A value of a
twentieth of a second (or zero) might be better for these trials.

Then, try your new runGenerations function on input lists with varying numbers of 0s. You should use the random
element chooser that you wrote at the end of the previous part of the lab as your setNewElement function. Here are two
examples:

>>> runGenerations([0,0,0,0,1])

[0, 0, 0, 0, 1]
[1, 0, 1, 1, 1]
[1, 1, 0, 0, 0]
[1, 0, 1, 0, 1]
[1, 0, 0, 0, 1]
[1, 1, 1, 1, 0]
(o, 1, 1, 0, 0]
[1, 1, 0, 1, 0]
[0, o, 1, 1, 0]
(o, 1, 1, 1, 1]
[1, 1, 1, 0, 0]
[1, 1, 0, 1, 0]
[1, 1, 1, 1, 1]
12

>>> runGenerations([0,1,0,1,1])

[0, 1, o, 1, 1]
[0, 0, 0, 1, 0]
[0, 1, 0, 1, 1]
[1, 1, 0, 1, 1]
1, 1, 1, 1, 1]
4

Autolab Notes:

Submit your python code as you go to determine whether you answered the questions correctly.

Autograder has its limits, so it cannot test the random methods. This means half of your grade will be determined
by the TA. Get started early so you can confirm correct output during lab times.

Make sure to include a main function.

5%) setNewElement()
10%) setNewElementql()
10%) setNewElementq2()

5%) setNewElementq4 ()

(
(
(
e (10%) setNewElementq3()
(
(10%) allOnes()
(

50%) TA performing their own tests on setNewElementq4(), newGenerations(), and commenting/style.

