
Washington State University Vancouver

Program Design and Development - CS 121

Assignment 5 Part 2

Professor:
Ben McCamish

October 13, 2020

Overall Assignment

Your code should all be contained in a single file (excluding additional files I provide) titled assignment5p2.py. Your
program must be written for Python 3.6+.

This week we will continue with the programming of our game. You may need to reuse some of your code from Part 1.

1 Getting started

Create a new file called assignment5p2.py and put the a header at the top of that file similar to this:

Assignment 5 Part 2
Jane Smith
October 8, 2019

Alternatively, you may use the template provided in autolab, but the comment at the top of the file is still required.

2 Displaying the lists graphically

At the moment, your random-evolver for lists displays its interim generations using text only. This part will use Python’s
graphics to display those lists. In addition, we will use graphics-based input in order to interact with the functions.

The csplot.py module contains a function named show() that will display lists as patches of color in a window. To
use csplot, follow these steps:

1. Be sure that you move csplot.py to the same directory that your assignment5p2.py file is located.

2. Find csplot.py in the handout folder.

3. Include the line from csplot import * at the top of your file near the other import lines - this will provide access
to the graphics functions in csplot.

4. Include the line show(L) right above the print(L) line that is already in your runGenerations function. This is
the command to display your list graphically.

2.1 How does it display lists?
Try the function call

show([1,0,1,1,0])

and you should see a window that looks like the following:

Figure 1: Example Output

1

3 Accepting user input

The approach to evolving lists thus far is, well, a bit too random. This section will enable the user to guide the process
by clicking on the graphical representation of the list. Replace your evolve and setNewElement functions by copying these
at the bottom of your file:

def evolve(L):
""" evolve takes in a list of integers, L,
and returns a new list of integers
considered to be the "next generation"
"""
N = len(L) # N now holds the size of the list L
x = sqinput() # Get mouse input from the user
return [setNewElement(L, i, x) for i in range(N)]

def setNewElement(L, i, x=0):
""" setNewElement returns the NEW list's ith element
input L: any list of integers
input i: the index of the new element to return
input x: an extra, optional input for future use
"""
if i == x: # if it's the user's chosen column,

return choice([0,1]) # return a random 0 or 1
else: # otherwise

return L[i] # return the original

Alternatively, you can use the template provided in the handout that contains the updated functions. Note that sqinput()
is a function from the csplot module which takes mouse input from the user. It returns the index of the square closest
to the mouse click.

Try running runGenerations([0,0,0,0,0,0]). Now, the execution should pause and wait for you to click on one
of the squares in the window. Note that the square does not simply change from 0 to 1 and 1 to 0 - the call to choice
randomizes the result.

3.1 Toggling Lights
Change the setNewElement function so that the light the user clicks on toggles from 0 to 1 or from 1 to 0, as appropriate.
Hint: if the old value of the light is L[i], what will you get if you subtract that value from 1?
Be sure to test your code by running

runGenerations([0,0,0,0,0,0])

Admittedly, the “game” is not difficult to win in this case, but the next part of the lab adds the wrinkle that makes it
much more challenging.

4 Setup Done, now questions

4.1 Question 1 (10 points)
Now, you are ready to implement a full 1D version of “Lights On”. Modify your code so that the game play is as it should
be (i.e., when you toggle one light, the lights next to it also toggle). Remember, lights do not “wrap around”. That is, the
lights at the edge of the board have only one neighbor. The function runGenerations(L) should then play the game
from the initial starting list L.

Suggestions: Only setNewElement needs to change in order to implement this game. You will need to compare the
value of i, which is checked for each light in the row, and x, which is the user’s choice.

2

4.2 Question 2 (10 points)
Create a function named

randBL(N)

that takes in a nonnegative integer, N, and returns a list of length N in which each element is equally likely to be a 0 or a
1. Raw recursion is one way to handle this; list comprehensions are another. This randBL function makes it easy to start
a new, random game. Try running

runGenerations(randBL(9))

to be sure it works.

4.3 Question 3: The final 2D version (40 points)
The show command will display 2d grids of lights as well as the 1d rows that this lab has used thus far. For example, try:

show([[0,1,0], [1,1,0], [0,0,1]])

You will see a three-by-three grid of lights appear. Each element of the input list to show is, itself, a row of the resulting
grid of squares. The rows are plotted from low-to-high in the window.

For this question, implement the 2d game of lights out by writing a new function named runGenerations2d(L).
Your program should quit and print some victory line once the entire board is filled up (required). Clicking on a square
should change its neighbors (if any) to the north, east, west, and south. You will need to rework some of the helper
functions in order to implement run2dGenerations – rather than write over or redefine your existing functions, create
new names for them, For example, you may need

1. evolve2d

2. setNewElement2d

3. allOnes2d

4. randBL2d

You will also need the function sqinput2() which returns 2d data, as follows:

x, y = sqinput2()

Warnings:
Make sure you understand exactly how the displayed squares and their coordinates correspond to the positions in the list.
If you copy and paste your code (recommended) be sure to change all the function calls within each function to their 2d
counterpart.

4.4 Question 4 (20 points) - Letting the computer play...
Don’t be selfish – Write new versions of evolve and evolve2d so that the computer gets to play! That is, have computer
choose (randomly) possible indices and the game continues until it’s solved. Warning: one-sixth of all the initial binary
lists are dead ends! That is, there is no combination of toggled lights that will end up at the all-ones list. So, letting the
computer play for a long time on one of those dead-ends will result in Python running out of memory (or reaching its
recursion limit).

Commenting/Style (20 points)

Your code will be examined for comments and style. This means that you should include reasonable comments in your
code. You might comment and add a small description for each function you create. If there is a particularly complex
line of code, then you may comment that single line. Your code should also contain a main() function that has all of the

3

test code that you used. No code should exist outside of a function. Note: You must remove all comments and pass
statements that came with the template to receive full marks.

4

Autolab Notes:

• Submit only your assignment5p2.py file.

• Autograder has its limits, so it cannot test using inputs from the user. Thus, you will have to develop your own
tests. Ask the TA or I if you are having trouble coming up with good edge cases. Get started early so you have
plenty of time to test!!

• Make sure to include a main function.

5

