
Washington State University Vancouver

Program Design and Development - CS 121

Assignment 9 (Final Prep)

Professor:
Ben McCamish

November 9, 2020

Overall Assignment

Your code should all be contained in a single file titled assignment9.py. Your program must be written for Python 3.6+.

Warning: This assignment will be used for the final project. You will want to make sure that it works before moving
onto the final assignment.

This week you will implement the Connect 4 game. Connect Four is a variation of tic-tac-toe played on a 7x6 rectangular
board. The game is played by two players, alternating turns, with each trying to place four checkers in a row vertically,
horizontally, or diagonally. One constraint in the game is because the board stands vertically, the checkers cannot be
placed in any arbitrary position. A checker may only be placed at the top of one of the currently existing columns (or it
may start a new column).

1 Getting started

Create a new file called assignment9.py and create a class called Connect4 with a constructor method and a representation
method. Alternatively, you may use the template provided in autolab.

1.1 Constructing the Class (5 points)
Examine the following code (included in the handout). We will need some data structure to store the board. A good one
to use here might be a list of lists. That way, we can have a 2d board for the game. Our constructor will accept a width
and a height. This is assuming the game could be played on a size other than the default 6x7. In total, the Connect4
class should have three variables, the board (a list of lists), height, and width.

class Connect4(object):
"""This is the Connect4 Constructor"""
def __init__(self, width, height, window=None):

self.width = width
self.height = height
self.data = []

for row in range(self.height):
boardRow = []
for col in range(self.width):

boardRow += [' ']
self.data += [boardRow]

1.2 Representing the Class
We will want a clean way of presenting the class. Examine the __repr__ method in the handout. Notice how it is missing
some code that you will need to fill in. Once your code is filled it, your object should print like the following:

0 1 2 3 4 5 6

1

2 Performing Actions

First you will want to implement some methods that can perform actions. We will start with the most interesting one,
adding a move.

2.1 Adding Moves (10 points)
Now we will need some method that can add moves to our game. This method takes two inputs: the first input col
represents the index of the column to which the checker will be added; the second input ox either an ‘X’ or ‘O’. In
addMove you do not have to check that col is a legal column number or that there is space in column col. That checking
is important, however. The next method, which is called allowsMove, will do just that. You will want to call this method
inside of addMove to determine if the move can be performed.

def addMove(self, col, ox):
#find the first row in the column
#without a checker in it and
#then add the ox checker there...
#do this by checking values
#in self.data...

Example

Suppose I have the following code:

b = Connect4(7,6)
b.addMove(0,'X')
b.addMove(1,'O')
b.addMove(1,'X')
b.addMove(2,'O')
print(b)

I should see this output:

	X					
X	O	O				

0 1 2 3 4 5 6

2.2 Clear Board (5 points)
The method clear(self), should clear the board that invokes it. Not much to say about clear(self). It may be useful
when starting a new game.

2.3 Delete Move (20 points)
The method delMove(self, c) removes a checker from the board. This method should do the opposite of addMove. It
should remove the top checker from the column c. If the column is empty, then delMove should do nothing. This function
may not seem useful now, but it will become very useful when you try to implement your own Connect Four player (Final
Project).

2

3 Performing Checks

In this section you will implement two new methods that perform checks on your game board. The first will check whether
the move tried is legal or not. The second will check if the board is full. We will be using these later for prompts with
the user.

3.1 Allows Move (5 points)
The method allowsMove(self, c) is used for checking if a column is a legal move. This method should return True if
the calling object (of type Connect4) does allow a move into column c. It returns False if column c is not a legal column
number for the calling object. It also returns False if column c is full.

3.2 Board Full (5 points)
The method isFull(self) checks if the board is full. This method should return True if the calling object (of type
Connect4) is completely full of checkers. It should return False otherwise. Notice that you can leverage allowsMove to
make this method very concise! Unless you’re supernaturally patient, you’ll want to test this on small boards.

4 Winning The Game (30 points)

Next, you will want to implement another method that can check whether the game has been won or not. The method
winsFor (self, ox): checks if someone has won the game. It should return True if there are four checkers of type ox
in a row on the board. It should return False otherwise. One way to approach this is to consider each possible “anchor”
checker that might start a four-in-a-row run. for example, all of the “anchors” that might start a horizontal run (going
from left to right) must be in the columns at least four places from the end of the board. For example, the following code
will check for wins horizontally. You will want to implement the remainder of the function that tests for wins Vertically,
NE↔SW, and NW↔SE.

def winsFor(self,ox):
for row in range(self.height):

for col in range(self.width - 3):
if self.data[row][col] == ox and \

self.data[row][col+1] == ox and \
self.data[row][col+2] == ox and \
self.data[row][col+3] == ox:
return True

5 Hosting the Game (20 points)

The method hostGame(self) brings everything together into the familiar game. It should alternate turns between ‘X’
and ‘O’. It should ask the user to select a column number for each move. Here are a few important points to keep in mind:

• This method should print the board before prompting for each move.

• After obtaining a move, you should check if the column chosen is a valid one (using allowsMove()). If invalid, issue
an error message and prompt the user for another move instead.

• This method should place the checker into its (valid) column. Then it should check if that player has won the game
or if the board is now full.

• If the game is over for either reason, the game should stop, the board should be printed out one last time, and the
program should report who won (or that it was a tie.)

3

Autolab Notes:

• Submit your python code as you go to determine whether you answered the sections correctly (highly suggested).

• The tests for the hostgame() will be performed by the TA.

• Even though points are assigned to certain functions, others must be working to earn them. For example, clear()
won’t work unless addMove() is finished, as I cannot clear a board without first adding some things to it.

• Only submit a single .py file.

4

